FANDOM


The Discontinued Rare Index is made up of a weighted average of all of the discontinued rare items listed in the Market Watch, with the starting date of this average on 31 December 2008, at an index of 100. The overall rising and falling of discontinued rare item prices is reflected in this index.

While specialised for just watching discontinued rare item prices, it is set up and adjusted in a manner similar to the Common Trade Index, and the divisor may be adjusted to include new rare items "discontinued" by Jagex (see the FAQ for more information).

As of today, this index is 4,123.09 Up +0.00

Historical chart

Loading...

Summary

Any suggested changes to this index should be added to the talk page.

  • Start date: 31 December 2008 (at index of 100)
  • Index today: 4,123.09
  • Change today: Up +0.00
  • Number of items: 24 (last adjusted on 30 December 2014)
  • Index divisor: 15.6373 (last adjusted on 30 December 2014)

List of items

This is the current list of rare items included in this index:

Icon Item Price Direction Low Alch High Alch Limit Members Details Last updated
Black Santa hatBlack Santa hat2,147,483,636
Unchg
64962F2P iconview17 days ago
Blue hallowe'en maskBlue hallowe'en mask500,703,177
Unchg
692F2P iconview17 days ago
Blue partyhatBlue partyhat2,147,483,647
Unchg
002F2P iconview17 days ago
Christmas crackerChristmas cracker2,147,483,647
Unchg
002F2P iconview17 days ago
Christmas scytheChristmas scythe314,293,066
Unchg
122F2P iconview17 days ago
Christmas tree hatChristmas tree hat35,775,529
Unchg
100,000150,0002F2P iconview17 days ago
Cloak of SeasonsCloak of Seasons56,707,532
Unchg
Cannot be alchemised2F2P iconview17 days ago
Crown of SeasonsCrown of Seasons10,288,995
Unchg
100,000150,0002F2P iconview17 days ago
Disk of returningDisk of returning695,675,653
Unchg
472F2P iconview17 days ago
Easter eggEaster egg252,754,428
Unchg
462F2P iconview18 days ago
Fish maskFish mask1,392,298
Unchg
180,000270,0002F2P iconview18 days ago
Green hallowe'en maskGreen hallowe'en mask427,672,547
Unchg
692F2P iconview18 days ago
Green partyhatGreen partyhat2,147,483,647
Unchg
002F2P iconview18 days ago
Half full wine jugHalf full wine jug1,503,334,020
Unchg
002F2P iconview18 days ago
Holly wreathHolly wreath1,716,375,724
Unchg
122F2P iconview18 days ago
Off-hand rubber turkeyOff-hand rubber turkey714,447
Unchg
122F2P iconview18 days ago
PumpkinPumpkin426,932,977
Unchg
12182F2P iconview18 days ago
Purple partyhatPurple partyhat2,147,483,403
Unchg
002F2P iconview18 days ago
Red hallowe'en maskRed hallowe'en mask630,761,608
Unchg
692F2P iconview18 days ago
Red partyhatRed partyhat2,147,483,647
Unchg
002F2P iconview18 days ago
Rubber turkeyRubber turkey678,365
Unchg
122F2P iconview18 days ago
Santa hatSanta hat666,056,046
Unchg
64962F2P iconview18 days ago
White partyhatWhite partyhat2,147,483,647
Unchg
002F2P iconview18 days ago
Yellow partyhatYellow partyhat2,147,483,647
Unchg
002F2P iconview18 days ago


Adjustments

29 September 2012
Item Base date Base price Price on adjustment date Comments
Christmas cracker 31 December 2008 688,800,000 2,146,908,554 Unchanged
Blue partyhat 340,100,000 2,147,483,647
Green partyhat 114,800,000 1,124,859,082
Purple partyhat 83,100,000 895,254,988
Red partyhat 129,400,000 1,232,179,013
White partyhat 183,300,000 1,652,939,303
Yellow partyhat 96,300,000 948,567,763
Pumpkin 5,300,000 165,935,075
Easter egg 4,300,000 56,837,419
Blue h'ween mask 12,800,000 112,172,382
Green h'ween mask 10,600,000 90,439,249
Red h'ween mask 17,300,000 149,074,067
Santa hat 14,800,000 116,884,816
Disk of returning 4,700,000 171,076,782
Half full wine jug 31,100,000 261,000,577
Fish mask 4,555,462 Added item

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 15.0000 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,146,908,554}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,124,859,082}{114,800,000} + \dots + \frac{261,000,577}{31,100,000} \\ & = 181.52107486 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 181.52107486 - 0 + 1 \\ & = 182.52107486 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.0000 \times \frac{182.52107486}{181.52107486} \\ & = 15.0826 \text{ (4 d.p.)} \end{align} $
20 January 2013
Item Base date Base price Price on adjustment date Comments
Christmas cracker 31 December 2008 688,800,000 2,147,476,523 Unchanged
Blue partyhat 340,100,000 2,147,483,647
Green partyhat 114,800,000 1,439,919,758
Purple partyhat 83,100,000 1,194,593,128
Red partyhat 129,400,000 1,588,813,583
White partyhat 183,300,000 2,115,586,339
Yellow partyhat 96,300,000 1,288,308,900
Pumpkin 5,300,000 153,543,323
Easter egg 4,300,000 73,851,614
Blue h'ween mask 12,800,000 130,080,270
Green h'ween mask 10,600,000 107,141,857
Red h'ween mask 17,300,000 168,034,752
Santa hat 14,800,000 130,038,816
Disk of returning 4,700,000 193,631,082
Half full wine jug 31,100,000 282,814,298
Fish mask 29 September 2012 4,555,462 1,778,504
Christmas tree hat 2,295,576 Added item

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 15.0826 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,146,908,554}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,439,919,758}{114,800,000} + \dots + \frac{1,778,504}{4,555,462} \\ & = 209.14534690 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 209.14534690 - 0 + 1 \\ & = 210.14534690 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.0826 \times \frac{210.14534690}{209.14534690} \\ & = 15.1547 \text{ (4 d.p.)} \end{align} $
23 July 2013
Item Base date Base price Price on adjustment date Comments
Christmas cracker 31 December 2008 688,800,000 2,147,483,557 Unchanged
Blue partyhat 340,100,000 2,147,483,647
Green partyhat 114,800,000 1,845,813,270
Purple partyhat 83,100,000 1,514,338,96
Red partyhat 129,400,000 2,100,264,784
White partyhat 183,300,000 2,147,483,598
Yellow partyhat 96,300,000 1,607,195,89
Pumpkin 5,300,000 177,606,966
Easter egg 4,300,000 82,884,794
Blue h'ween mask 12,800,000 169,489,376
Green h'ween mask 10,600,000 129,808,159
Red h'ween mask 17,300,000 234,599,317
Santa hat 14,800,000 149,818,733
Disk of returning 4,700,000 226,927,013
Half full wine jug 31,100,000 320,604,356
Fish mask 29 September 2012 4,555,462 1,446,274
Christmas tree hat 20 January 2013 2,295,576 26,024,637
Crown of Seasons 8,307,542 Added item

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 15.1547 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,147,483,557}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,845,813,270}{114,800,000} + \dots + \frac{26,024,637}{2,295,576} \\ & = 260.57227963 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 260.57227963 - 0 + 1 \\ & = 261.57227963 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.1547 \times \frac{261.57227963}{260.57227963} \\ & = 15.2129 \text{ (4 d.p.)} \end{align} $
20 January 2014
Item Base date Base price Price on adjustment date Comments
Christmas cracker 31 December 2008 688,800,000 2,147,483,632 Unchanged
Blue partyhat 340,100,000 2,147,483,647
Green partyhat 114,800,000 1,490,829,327
Purple partyhat 83,100,000 1,279,369,134
Red partyhat 129,400,000 1,696,893,747
White partyhat 183,300,000 2,146,833,194
Yellow partyhat 96,300,000 1,335,202,311
Pumpkin 5,300,000 174,290,712
Easter egg 4,300,000 70,272,905
Blue h'ween mask 12,800,000 132,769,255
Green h'ween mask 10,600,000 110,890,723
Red h'ween mask 17,300,000 185,134,793
Santa hat 14,800,000 135,913,306
Disk of returning 4,700,000 223,384,911
Half full wine jug 31,100,000 333,709,743
Fish mask 29 September 2012 4,555,462 944,822
Christmas tree hat 20 January 2013 2,295,576 12,593,302
Crown of Seasons 23 July 2013 8,307,542 3,926,892
Black Santa hat 222,967,707 Added item

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 15.2129 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,147,483,557}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,490,829,327}{114,800,000} + \dots + \frac{12,593,302}{2,295,576} + \frac{3,926,892}{8,307,542} \\ & = 230.87579845 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 230.87579845 - 0 + 1 \\ & = 231.87579845 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.2129 \times \frac{231.87579845}{230.87579845} \\ & = 15.2787 \text{ (4 d.p.)} \end{align} $
19 June 2014
Item Base date Base price Price on adjustment date Comments
Christmas cracker 31 December 2008 688,800,000 2,147,483,644 Unchanged
Blue partyhat 340,100,000 2,147,483,647
Green partyhat 114,800,000 1,512,978,741
Purple partyhat 83,100,000 1,242,748,792
Red partyhat 129,400,000 1,706,390,538
White partyhat 183,300,000 2,147,481,758
Yellow partyhat 96,300,000 1,325,097,236
Pumpkin 5,300,000 157,608,053
Easter egg 4,300,000 62,666,643
Blue h'ween mask 12,800,000 121,249,470
Green h'ween mask 10,600,000 98,258,298
Red h'ween mask 17,300,000 170,663,885
Santa hat 14,800,000 125,533,632
Disk of returning 4,700,000 211,466,440
Half full wine jug 31,100,000 348,603,157
Fish mask 29 September 2012 4,555,462 669,574
Christmas tree hat 20 January 2013 2,295,576 12,559,556
Crown of Seasons 23 July 2013 8,307,542 4,555,009
Black Santa hat 20 January 2013 222,967,707 410,924,805
Cloak of Seasons 7,614,236 Added item

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 15.2787 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,147,483,644}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,512,978,741}{114,800,000} + \dots + \frac{4,555,009}{8,307,542} + \frac{410,924,805}{222,967,707} \\ & = 221.84047459 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 221.84047459 - 0 + 1 \\ & = 222.84047459 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.2787 \times \frac{222.84047459}{221.84047459} \\ & = 15.3476 \text{ (4 d.p.)} \end{align} $
30 December 2014
Item Base date Base price Price on adjustment date Comments
Christmas cracker 31 December 2008 688,800,000 2,147,483,644 Unchanged
Blue partyhat 340,100,000 2,147,483,647
Green partyhat 114,800,000 1,452,340,733
Purple partyhat 83,100,000 1,233,390,908
Red partyhat 129,400,000 1,738,594,833
White partyhat 183,300,000 2,147,483,644
Yellow partyhat 96,300,000 1,314,553,072
Pumpkin 5,300,000 149,804,919
Easter egg 4,300,000 49,183,614
Blue h'ween mask 12,800,000 101,362,653
Green h'ween mask 10,600,000 82,685,014
Red h'ween mask 17,300,000 132,872,973
Santa hat 14,800,000 115,823,577
Disk of returning 4,700,000 200,971,362
Half full wine jug 31,100,000 348,603,157
Fish mask 29 September 2012 4,555,462 601,926
Christmas tree hat 20 January 2013 2,295,576 12,651,188
Crown of Seasons 23 July 2013 8,307,542 4,044,842
Black Santa hat 20 January 2013 222,967,707 340,890,058
Cloak of Seasons 19 June 2014 7,614,236 27,631,528
Rubber turkey 4,140,748 Added item
Off-hand rubber turkey 3,590,829
Christmas scythe 72,191,580
Holly wreath 372,492,991

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 15.3476 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,147,483,644}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,452,340,733}{114,800,000} + \dots + \frac{340,890,058}{222,967,707} + \frac{27,631,528}{7,614,236} \\ & = 211.91329563 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 211.91329563 - 0 + 4 \\ & = 215.91329563 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.3476 \times \frac{215.91329563}{211.91329563} \\ & = 15.6373 \text{ (4 d.p.)} \end{align} $